8 research outputs found

    Hydrogels in the natural environment – history and technologies

    No full text
    The growing competition between companies involved in the cultivation of plants, forces the research and development departments to search for new technologies and preparations to achieve better results in these fields. No less important factor determining the choice of technologies and preparations for use in the cultivation of plants, is their impact on the environment. By many years reckless actions (over-fertilization, intensive use of chemical plant protection products, irrigation) the natural environment is constantly degraded. Problems are also caused by capricious climate changes, causing either heavy rains or periods of prolonged drought. The superabsorbent technology seems to be a great opportunity. The solution used for years in the production in technical usage, today has the chance to help agriculture in the fight against drought. The developing technology allows to produce fully biodegradable products that perform the function of soil water storage for plants. Hydrogels designed for agricultural purposes are dedicated to the natural environment, in the same time are allowing to limit the negative effects of drought and revitalize natural resources. Basic economic and social benefits: reducing the need for irrigation by about 20–50% - preventing the effects of water stress and drought, limitation of fertilizer doses by approx. 30% through the “intelligent” way of release of nutrients (fertilizers) within the root system, protection of the natural environment against the effects of over-fertilization and land salinity. limiting the leaching of fertilizers into deeper soil parts, protection of groundwater, limiting the intensity of care treatments by approx. 9%, increase in yield by approx. 15%

    Nano-Sized Selenium Maintains Performance and Improves Health Status and Antioxidant Potential While Not Compromising Ultrastructure of Breast Muscle and Liver in Chickens

    No full text
    The poultry industry is looking for the most effective sources of selenium (Se) for commercial use. Over the past five years, nano-Se has attracted a great deal of attention in terms of its production, characterisation and possible application in poultry production. The objective of this study was to evaluate the effects of dietary levels of inorganic and organic Se, selenised yeast and nano forms of selenium on breast meat quality, liver and blood markers of antioxidants, the ultrastructure of tissue and the health status of chickens. A total of 300 one-day-old chicks Ross 308 were divided into 4 experimental groups, in 5 replications, with 15 birds per replication. Birds were fed the following treatments: a standard commercial diet containing inorganic Se in the form of inorganic Se at the level of 0.3 mg/kg diet and an experimental diet with an increased level of Se (0.5 mg/kg diet). The use of other forms of Se (nano-Se) versus sodium selenate significantly influences (p ≤ 0.05) a higher collagen content and does not impair physico-chemical properties in the breast muscle or the growth performance of the chickens. In addition, the use of other forms of selenium at an increased dose versus sodium selenate affected (p ≤ 0.01) the elongation of sarcomeres in the pectoral muscle while reducing (p ≤ 0.01) mitochondrial damage in hepatocytes and improving (p ≤ 0.05) oxidative indices. The use of nano-Se at a dose of 0.5 mg/kg feed has high bioavailability and low toxicity without negatively affecting the growth performance and while improving breast muscle quality parameters and the health status of the chickens

    Comparison of the Toxicity of Pristine Graphene and Graphene Oxide, Using Four Biological Models

    No full text
    There are numerous applications of graphene in biomedicine and they can be classified into several main areas: delivery systems, sensors, tissue engineering and biological agents. The growing biomedical field of applications of graphene and its derivates raises questions regarding their toxicity. We will demonstrate an analysis of the toxicity of two forms of graphene using four various biological models: zebrafish (Danio rerio) embryo, duckweed (Lemna minor), human HS-5 cells and bacteria (Staphylococcus aureus). The toxicity of pristine graphene (PG) and graphene oxide (GO) was tested at concentrations of 5, 10, 20, 50 and 100 µg/mL. Higher toxicity was noted after administration of high doses of PG and GO in all tested biological models. Hydrophilic GO shows greater toxicity to biological models living in the entire volume of the culture medium (zebrafish, duckweed, S. aureus). PG showed the highest toxicity to adherent cells growing on the bottom of the culture plates—human HS-5 cells. The differences in toxicity between the tested graphene materials result from their physicochemical properties and the model used. Dose-dependent toxicity has been demonstrated with both forms of graphene

    Comprehensive cancer-oriented biobanking resource of human samples for studies of post-zygotic genetic variation involved in cancer predisposition

    No full text
    The progress in translational cancer research relies on access to well-characterized samples from a representative number of patients and controls. The rationale behind our biobanking are explorations of post-zygotic pathogenic gene variants, especially in non-tumoral tissue, which might predispose to cancers. The targeted diagnoses are carcinomas of the breast (via mastectomy or breast conserving surgery), colon and rectum, prostate, and urinary bladder (via cystectomy or transurethral resection), exocrine pancreatic carcinoma as well as metastases of colorectal cancer to the liver. The choice was based on the high incidence of these cancers and/or frequent fatal outcome. We also collect age-matched normal controls. Our still ongoing collection originates from five clinical centers and after nearly 2-year cooperation reached 1711 patients and controls, yielding a total of 23226 independent samples, with an average of 74 donors and 1010 samples collected per month. The predominant diagnosis is breast carcinoma, with 933 donors, followed by colorectal carcinoma (383 donors), prostate carcinoma (221 donors), bladder carcinoma (81 donors), exocrine pancreatic carcinoma (15 donors) and metachronous colorectal cancer metastases to liver (14 donors). Forty percent of the total sample count originates from macroscopically healthy cancer-neighboring tissue, while contribution from tumors is 12%, which adds to the uniqueness of our collection for cancer predisposition studies. Moreover, we developed two program packages, enabling registration of patients, clinical data and samples at the participating hospitals as well as the central system of sample/data management at coordinating center. The approach used by us may serve as a model for dispersed biobanking from multiple satellite hospitals. Our biobanking resource ought to stimulate research into genetic mechanisms underlying the development of common cancers. It will allow all available "-omics" approaches on DNA-, RNA-, protein- and tissue levels to be applied. The collected samples can be made available to other research groups
    corecore